
CSE 3101: Internet Computing II
Lab Session 9
Paul Crawford

Semester 1, Week 14 (26th & 27th November, 2018)

1. Aims

1.1. Further understanding of Web applications, including client-side Web Forms (with server-
side processing upon submission), server-side PHP functions, and Web Service architectures.

1.2. Further increased facility with the ongoing sets of concepts & techniques needed for eventual
completion of the Final Project.

1.3. POLICY CHANGE (REMINDER): Please note that henceforth all Lab Sessions will be
marked and count as a portion of the overall Lab grade (10%). Completed labwork must be
zipped into an archive (filename given later below at the end of § 2.1), and submitted to the
Tutor (<pcrawford@mac.com>) by midnight Friday each week, with the Subject line:
‘CSE3101 - Lab <N> - <YourGroupName>’.

2. Tasks

2.1. Web Forms, and Service API ‘Layer’: “Unlocking” Search Capability for Staff

2.1.1. NOTE: This Lab is a continuation of the previous Lab 08, i.e., its functionality
occurs within the context of a complete (albeit very bare-bones) UoG CS Dept.
prototype website.

2.1.2. Please try to ensure that your xAMP[P] stack includes a modern version of PHP at
least ≥ v5.4.0 (e.g., in XAMPP, by navigating to ‘localhost/dashboard’, and then
clicking ‘PHPInfo’ in the top bar). This will help to avoid any “missing-feature” errors
such as those related to the relatively recent 'http_response_code()' function. {It
might end up being necessary for the Tutor or Lecturer to make formal upgrade
requests to the Technical staff (?).}

2.1.3. Continue to use the Lab 08 test database {named ‘uog_cs_prototype_db’}, from the
last Lab session. NOTE: It is assumed that the DB has already been populated with at
least the two test Staff Members from that Lab session (viz., ‘Test Tester’ and ‘Test2
Tester2’).

2.1.4. Continue to use the ‘uog_cs_prototype’ subfolder {located in your Apache Web Root
directory (e.g., ‘C:\xampp\htdocs’)}, from the last Lab session.

1 of 5

mailto:pcrawford@mac.com?subject=
mailto:pcrawford@mac.com?subject=

2.1.5. Modify the ‘C:\xampp\uog_cs_prototype\site\category\staff.php’ PHP source file, to
allow (high-level) searching for matching Staff Members.

I.e., a very simple Search form is to be added at the top of the dynamically-generated
Staff (List) Page, and any submission from that form is now to be handled
appropriately. As part of this task, the existing Search functionality (currently unused)
in the full Staff Class/Object file will be “unlocked”.

Recall that you could use either the 'if' statement or the ternary conditional operator
(?:) when checking for an empty GET field-value or object-member, etc. Also, a
useful built-in predicate to test for empty values is the aptly-named: empty().

For example, we could implement the Staff Search functionality, as follows (where
changes are indicated in larger bold, and the section is also now updated to make it
clearer that certain existing code is to be left intact and not accidentally replaced, etc.):

[…]

// retrieve the submitted query data (if any)
$staff_member->id = (isset($_GET["id"]) ? $_GET["id"] : 0);
$bGetAll = empty($staff_member->id);
$search_keywords = (isset($_GET["s"]) ? $_GET["s"] : "");
$bInSearchMode = ! empty($search_keywords);

// retrieve the requested data from the database via the Service API, […]
// [NOTE: The existing code has been “re-wrapped” for readability]
// [NOTE: Please do *not* forget to also add the new outermost
// closing ')' indicated {after the existing '…->readOne())'}]
$result_data_json = ($bInSearchMode
 ? $staff_member->search($search_keywords)
 : ($bGetAll
 ? $staff_member->read()
 : $staff_member->readOne()));

[…]

// translate that PHP data into markup language
if ($bInSearchMode || $bGetAll) {
 $result_data = "<h1>Staff List</h1>";

 // generate the simple Search form at the top
 $result_data .= '<form action="staff.php" method="get">' .
 'Keywords: <input name="s" type="text">' .
 '<input name="submit" type="submit" value="Search">' .
 "</form>" .
 "
<hr>
";

 // dispatch on processing status
 […]

} else { // there's just one record
 $result_data = "<h1>Staff Member Details</h1>";

 […]
}

[…]

CSE 3101: Internet Computing II	 Lab Session 9

2 of 5

2.1.6. Modify the ‘C:\xampp\uog_cs_prototype\site\object\staff_obj.php’ PHP source file,
to allow passing-through to lower-level (API) searching for matching Staff
Members.

I.e., within the ‘StaffMemberViaAPI’ Class, the existing commented-out 'search()'
method will now simply be un-commented.

For example, we could implement the Staff Search passing-through functionality, as
follows (where changes are indicated in larger bold):

<?php

// include core file
require_once "../../config/core.php";

class StaffMemberViaAPI {

 […]

 // methods:-

 […]

 // [Move comment-block "head" to *after* the 'search()' method]
 // !!! NOTE: The methods below are NOT yet […] Service API !!!
 /*
 // search Staff members
 function search($keywords) {
 [Just leave existing statements as-is …]
 }

 // [This comment-block "head" was moved to here from above]
 // !!! NOTE: The methods below are NOT yet […] Service API !!!
 /*
 // read Staff members with pagination
 public function readPaging($from_record_num, $records_per_page) {
 […]
 }

 […]
 */
} // class StaffMemberViaAPI
?>

2.1.7. Modify the ‘C:\xampp\uog_cs_prototype\site\site_api\category_api\staff_api.php’
PHP source file, to allow lower-level (API) searching for matching Staff Members.

I.e., the existing Search functionality (currently unused) in the full Staff Class/Object
file will be “unlocked”.

Recall that you could use either the 'if' statement or the ternary conditional operator
(?:) when checking for an empty GET field-value or object-member, etc. Also, a
useful built-in predicate to test for empty values is the aptly-named: empty().

For example, we could implement the Staff Search lower-level (API) functionality, as
follows (where changes are indicated in larger bold, and the section is also now

CSE 3101: Internet Computing II	 Lab Session 9

3 of 5

updated to make it clearer that certain existing code is to be left intact and not
accidentally replaced):

[…]

// retrieve the submitted query data (if any)
$staff_member->id = (isset($_GET["id"]) ? $_GET["id"] : "");
$bSetErrRespCodes = (isset($_GET["set_error_resp_codes"])
 ? (bool) $_GET["set_error_resp_codes"] : true);
$bGetAll = empty($staff_member->id);
$search_keywords = (isset($_GET["s"]) ? $_GET["s"] : "");
$bInSearchMode = ! empty($search_keywords);

// retrieve the requested data from the database, in PDO format
if ($bInSearchMode) {
 $result_data_pdo = $staff_member->search($search_keywords);

} else if ($bGetAll) {
 $result_data_pdo = $staff_member->read();

} else {
 $staff_member->readOne();
}

// convert that retrieved [PDO] data into JSON format
if ($bInSearchMode || $bGetAll) {
 […]

} else { // there's just one item
 […]
}

[…]

2.1.8. Continue to exercise the now–Search-enhanced Web Forms & Service API
functionality (this time, all URIs should be tested directly via any Web browser, not a
specialised web service such as Postman), and save the various result files as follows:

2.1.8.1. Navigate to ‘localhost/uog_cs_prototype/site/’. This will show the Site Display
“Master” Page, with links to all of the Category (List) Pages. Then, click the
Staff link {to retrieve all the existing Staff Members, indirectly via an internal
JSON API layer}. Note that there should already be at least two entries, from the
last Lab session (viz., ‘Test Tester’ and ‘Test2 Tester2’).

Next, via the simple Search form at the top, submit the following Search query:

Keywords	 : Test2

Then, save the resulting HTML page (there should be just 1 matching entry, for
‘Test2 Tester2’) to a file named ‘Staff_SearchViaAPI_AfterU_First.html’.

2.1.8.2. Again on that Staff (List) Page, submit the following Search query:

Keywords	 : Tester

Then, save the resulting HTML page (there should now be at least 2 matching

CSE 3101: Internet Computing II	 Lab Session 9

4 of 5

entries, for both ‘Test Tester’ and ‘Test2 Tester2’) to a file named
‘Staff_SearchViaAPI_AfterU_Second.html’

2.1.8.3. From the above 3 modified source files and 2 result files (5 files overall) — i.e.:
‘staff.php’, ‘staff_obj.php’, ‘staff_api.php’,
‘Staff_SearchViaAPI_AfterU_First.html’, and
‘Staff_SearchViaAPI_AfterU_Second.html‘ — create a zip archive named
‘CSE3101_Lab09_<YourGroupName>.zip’ and submit it as described in § 1.3.

2.2. Overall Considerations

2.2.1. For additional information, practice and code samples, you could also explore any of
various useful articles, tutorials & references available online. For instance, the
Wikipedia site (<en.wikipedia.org>) has several detailed articles on Web Services,
Web APIs, the REST architecture, etc.

CSE 3101: Internet Computing II	 Lab Session 9

5 of 5

http://en.wikipedia.org
http://en.wikipedia.org

