
CSE 3101: Internet Computing II
Lab Session 6
Paul Crawford

Semester 1, Week 11 (5th & 6th November, 2018)

1. Aims

1.1. Further understanding of Web applications, including client-side Web Forms (with server-
side processing upon submission), server-side PHP functions, and Web Service architectures.

1.2. Further increased facility with the ongoing sets of concepts & techniques needed for eventual
completion of the Final Project.

1.3. POLICY CHANGE (REMINDER): Please note that henceforth all Lab Sessions will be
marked and count as a portion of the overall Lab grade (10%). Completed labwork must be
zipped into an archive (filename given later below at the end of § 2.1), and submitted to the
Tutor (<pcrawford@mac.com>) by midnight Friday each week, with the Subject line:
‘CSE3101 - Lab <N> - <YourGroupName>’.

2. Tasks

2.1. Web API (RESTful Flavour), Continued

2.1.1. Continue to use the RESTful API folder (kindly provided by the 2nd Lecturer) from
Lab Session 5 {whose materials are still available at the tutor’s Nyanza Software
website (<www.nyanzasoftware.com>) > ‘Teaching’, § ‘University of Guyana’ >
‘CSE3101: Internet Computing II’} — specifically, its extracted ‘restapi’ subfolder that
was copied into your Apache Web Root directory (e.g., ‘C:\xampp\htdocs’).

2.1.2. Continue to use the test database named ‘api_db’ that was set up in Lab Session 5 via
the PhpMyAdmin console.

2.1.3. Continue to exercise the Web API functionality (the ‘R’ or query URIs can be tested
via any Web browser, and the ‘U’ URI can be tested via either the Tutor’s extra web
form or a specialised web service such as Postman), and save the various modified
source files and result files as follows:

2.1.3.1. Navigate to ‘localhost/restapi/product/read_one.php?id=28’ {to retrieve the
existing ‘Wallet (Improved)’ product already updated in Lab Session 5}, and save
the resulting JSON data (there should be just 1 entry) to a file named
‘Product_Read_One_Original.json’.

1 of 6

mailto:pcrawford@mac.com?subject=
mailto:pcrawford@mac.com?subject=
http://www.nyanzasoftware.com
http://www.nyanzasoftware.com

2.1.3.2. Modify the ‘C:\xampp\restapi\product\update.php’ PHP source file, to allow
omitting any three of the four non-‘id’ fields (from the decoded JSON submitted
data), where on the server side “omitting” is signified by an empty PHP value
(i.e., undefined/NULL, an empty-string or the number 0).

I.e., it must be possible to submit (from the client side) an update request that
specifies just the ‘id’ field and any subset of the remaining four fields (rather than
requiring all four to be filled-in to avoid accidentally erasing them).

Note that you could use either the 'if' statement or the ternary conditional
operator (?:) to guard against referencing an empty field-value (object-member).

A useful built-in predicate to test for empty values is the aptly-named: empty().

For example, we could adjust the assignments of the decoded JSON $data
object’s fields to the $product object’s corresponding fields, as follows (where
changes are indicated in bold):

[…]

// get id of product to be edited
$data = json_decode(file_get_contents("php://input"));

// set ID property of product to be edited
$product->id = $data->id;

// set product property values
$product->name = (! empty($data->name) ? $data->name : "");
$product->price = (! empty($data->price) ? $data->price : "");
$product->description = …; // Do likewise
$product->category_id = …; // Do likewise

[…]

2.1.3.3. Also modify the ‘C:\xampp\restapi\objects\product.php’ PHP source file,
‘function update()’, for all the abovementioned reasons. {Remember though, in
this workhorse function/method, to verify that at least one non-‘id’ field is non-
empty!}

Thus, the corresponding SQL ‘UPDATE …’ command must not set any omitted
fields, i.e.: it must set only non-empty fields.

Note that you could use the string-concatenation operator (.), and the ternary
conditional operator (?:), to build up the command’s ‘SET …’ clause so that it
includes only those fields with non-empty values, and has separating commas
only where necessary.

Again, a useful built-in predicate to test for empty values is the aptly-named:
empty().

Be especially careful with those separating commas; recall that a comma is
needed only when there's a field expression both before and after it!

CSE 3101: Internet Computing II	 Lab Session 6

2 of 6

Also, for the later prepared SQL statement, only the non-empty fields must get
bound as Params.

For example, we could apply all of the abovementioned adjustments, as follows
(where changes are indicated in bold):

[…]

// update the product
function update(){

 // sanitize
 //
 // [NOTE: This existing section was moved from below up to here]
 //
 $this->name=htmlspecialchars(strip_tags($this->name));
 $this->price=htmlspecialchars(strip_tags($this->price));
 $this->description=htmlspecialchars(strip_tags($this->description));
 $this->category_id=htmlspecialchars(strip_tags($this->category_id));
 $this->id=htmlspecialchars(strip_tags($this->id));

 // (non-)emptiness tests
 $bNameSupplied = ! empty($this->name);
 $bPriceSupplied = ! empty($this->price);
 $bDescSupplied = …; // Do likewise
 $bCatIDSupplied = …; // Do likewise

 // Verify that at least one non-'id' field was supplied
 //
 // [NOTE: Fill in the missing flags where indicated below ('…')!]
 //
 if (! ($bNameSupplied || $bPriceSupplied || … || …)) {
 return false;
 }

 // update query
 //
 // [NOTE: Fill in the missing flags where indicated below ('…')!]
 //
 // [NOTE: It’s also possible to simplify each comma-expression by
 // appending it to the then part ('?') of the preceding field-&-
 // placeholder–expression, and eliminating its condition-test’s
 // LHS — i.e., the flag to the left of the '&&' (and that '&&'
 // itself) — as that LHS is already satisfied. These 3 optional
 // simplifications are left as an exercise for the reader. :-)]
 //
 $query = "UPDATE
 " . $this->table_name . "
 SET
 " . ($bNameSupplied ? "name = :name" : "") .
 (($bNameSupplied &&
 ($bPriceSupplied || $bDescSupplied ||
 $bCatIDSupplied))
 ? "," : "") . "
 " . ($bPriceSupplied ? "price = :price" : "") .
 (($bPriceSupplied &&
 ($bDescSupplied || $bCatIDSupplied))
 ? "," : "") . "
 " . (… ? "description = :description" : "") .
 ((… && $bCatIDSupplied) ? "," : "") . "
 " . (… ? "category_id = :category_id" : "") . "
 WHERE
 id = :id";

CSE 3101: Internet Computing II	 Lab Session 6

3 of 6

 // prepare query statement
 $stmt = $this->conn->prepare($query);

 // bind new values
 //
 // [NOTE: Fill in the missing flags where indicated below ('…')!]
 //
 if ($bNameSupplied) { $stmt->bindParam(':name', $this->name); }
 if ($bPriceSupplied) { $stmt->bindParam(':price', $this->price); }
 if (…) $stmt->bindParam(':description', $this->description); }
 if (…) $stmt->bindParam(':category_id', $this->category_id); }

 […]
}

[…]

2.1.3.4. Navigate to ‘localhost/restapi/paulc_extras/cud_client.html’ OR use a web
service such as Postman, and update the existing ‘Wallet (Improved)’ product
(already modified in Lab Session 5) by submitting to the URI ‘localhost/restapi/
product/update.php’ the following POST data in JSON format, this time
updating the name only:

For the Client Form (which will auto-convert into JSON):
id	 	 : 28
name	 	 : Wallet (New and Improved)
(Note: All other fields are to be left empty.)

For Postman & similar services (making sure to select the JSON data-type):
{
 "id" : 28,
 "name" : "Wallet (New and Improved)"
}

Make sure that you see the result: ‘message: Product was updated.’. {Note: For
the Client Form, it will be logged to the Console.}

2.1.3.5. (Re-)Navigate to ‘localhost/restapi/product/read_one.php?id=28’. Verify that
the name was indeed correctly updated, and also that all other fields still retain
their existing values (i.e., have not been erased or set to null, "" or 0). Save the
resulting JSON data (there should of course still be just 1 entry) to a file named
‘Product_Read_One_AfterU_Name.json’.

2.1.3.6. (Re-)Navigate to ‘localhost/restapi/paulc_extras/cud_client.html’ OR use a web
service such as Postman, and update the existing ‘Wallet (Improved)’ product
(already modified in Lab Session 5) by submitting to the URI ‘localhost/restapi/
product/update.php’ the following POST data in JSON format, this time
updating the description only:

For the Client Form (which will auto-convert into JSON):
id	 	 : 28

CSE 3101: Internet Computing II	 Lab Session 6

4 of 6

description	 : You can really use this one!
(Note: All other fields are to be left empty.)

For Postman & similar services (making sure to select the JSON data-type):
{
 "id" : 28,
 "description" : "You can really use this one!"
}

Make sure that you see the result: ‘message: Product was updated.’. {Note: For
the Client Form, it will be logged to the Console.}

2.1.3.7. (Re-)Navigate to ‘localhost/restapi/product/read_one.php?id=28’. Verify that
the description was indeed correctly updated, and also that all other fields still
retain their existing values (i.e., have not been erased or set to null, "" or 0). Save
the resulting JSON data (there should of course still be just 1 entry) to a file
named ‘Product_Read_One_AfterU_Description.json’.

2.1.3.8. (Re-)Navigate to ‘localhost/restapi/paulc_extras/cud_client.html’ OR use a web
service such as Postman, and update the existing ‘Wallet (Improved)’ product
(already modified in Lab Session 5) by submitting to the URI ‘localhost/restapi/
product/update.php’ the following POST data in JSON format, this time
updating the price only:

For the Client Form (which will auto-convert into JSON):
id	 : 28
price	 : 1299
(Note: All other fields are to be left empty.)

For Postman & similar services (making sure to select the JSON data-type):
{
 "id" : 28,
 "price" : 1299
}

Make sure that you see the result: ‘message: Product was updated.’. {Note: For
the Client Form, it will be logged to the Console.}

2.1.3.9. (Re-)Navigate to ‘localhost/restapi/product/read_one.php?id=28’. Verify that
the price was indeed correctly updated, and also that all other fields still retain
their existing values (i.e., have not been erased or set to null, "" or 0). Save the
resulting JSON data (there should of course still be just 1 entry) to a file named
‘Product_Read_One_AfterU_Price.json’.

2.1.3.10. (Re-)Navigate to ‘localhost/restapi/paulc_extras/cud_client.html’ OR use a web
service such as Postman, and update the existing ‘Wallet (Improved)’ product
(already modified in Lab Session 5) by submitting to the URI ‘localhost/restapi/

CSE 3101: Internet Computing II	 Lab Session 6

5 of 6

product/update.php’ the following POST data in JSON format, this time
updating the category_id only:

For the Client Form (which will auto-convert into JSON):
id	 	 : 28
category_id	 : 1
(Note: All other fields are to be left empty.)

For Postman & similar services (making sure to select the JSON data-type):
{
 "id" : 28,
 "category_id" : 1
}

Make sure that you see the result: ‘message: Product was updated.’. {Note: For
the Client Form, it will be logged to the Console.}

2.1.3.11. (Re-)Navigate to ‘localhost/restapi/product/read_one.php?id=28’. Verify that
the category_id was indeed correctly updated, and also that all other fields still
retain their existing values (i.e., have not been erased or set to null, "" or 0).
Ssave the resulting JSON data (there should of course still be just 1 entry) to a
file named ‘Product_Read_One_AfterU_Category_ID.json’.

2.1.3.12. From the above 2 modified source files and 5 result files (7 files overall) — i.e.:
‘update.php’, ‘product.php’, ‘Product_Read_One_Original.json’,
‘Product_Read_One_AfterU_Name.json’,
‘Product_Read_One_AfterU_Description.json’,
‘Product_Read_One_AfterU_Price.json’, and
‘Product_Read_One_AfterU_Category_ID.json‘ — create a zip archive named
‘CSE3101_Lab06_<YourGroupName>.zip’ and submit it as described in § 1.3.

2.2. Overall Considerations

2.2.1. For additional information, practice and code samples, you could also explore any of
various useful articles, tutorials & references available online. For instance, the
Wikipedia site (<en.wikipedia.org>) has several detailed articles on Web Services,
Web APIs, the REST architecture, etc.

CSE 3101: Internet Computing II	 Lab Session 6

6 of 6

http://en.wikipedia.org
http://en.wikipedia.org

